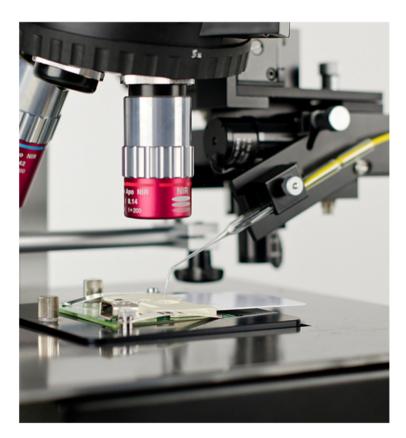

Fault Diagnosis and Tolerance in Cryptography (FDTC2017)

Exploiting Bitflip Detector for Non-Invasive Probing and its Application to Ineffective Fault Analysis

<u>Takeshi Sugawara</u>*, Natsu Shoji*, Kazuo Sakiyama* Kohei Matsuda**, Noriyuki Miura**, Makoto Nagata** *The University of Electro-Communications, Tokyo **Kobe University, Kobe

Overview

- An attack on a sensor-based countermeasure
- Fault detector as side channel
 - Obtaining 1-bit side-channel information by observing how the fault detector reacts to a laser fault injection
- New fault analysis using the above leakage based on linear cryptanalysis



Background:

Sensor-based Countermeasure against Laser Fault Injection

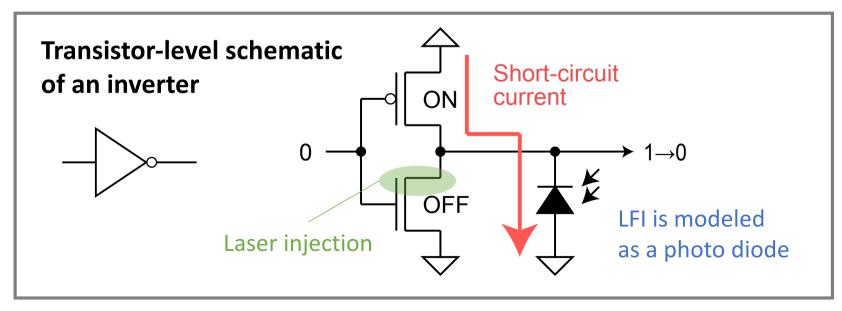
Laser Fault Injection (LFI)

- One of the strongest fault injection technique
 - Instruments are commercially available for testing

The image is taken from https://www.riscure.com

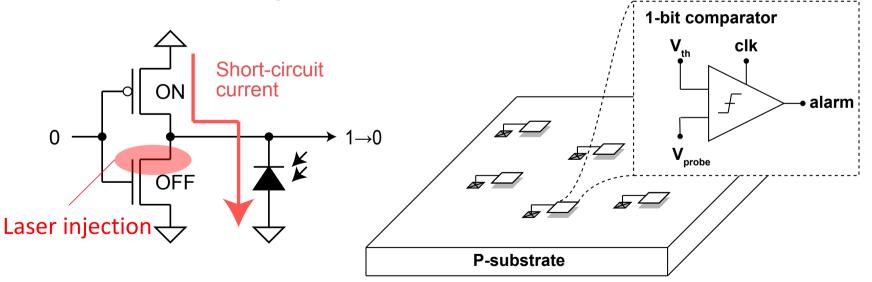
Sensor-based Countermeasure against Laser Fault Injection

- Detects laser fault injection by using sensors and terminates a sensitive operation upon detection
- Photo detectors
 - Disadvantage: limited coverage
 - Laser can be focused in order to avoid photo-sensitive area


Substrate bounce monitoring*

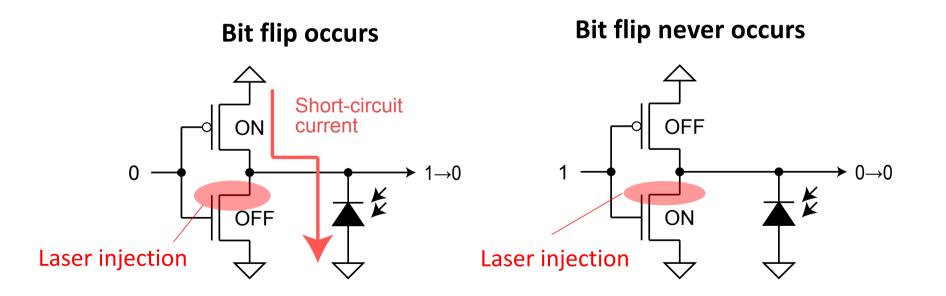
Monitors temporal short-circuit current for detecting laser injection

*K. Matsuda, et al., "On-Chip Substrate-Bounce Monitoring for Laser-Fault Countermeasure," AsianHOST 2016.

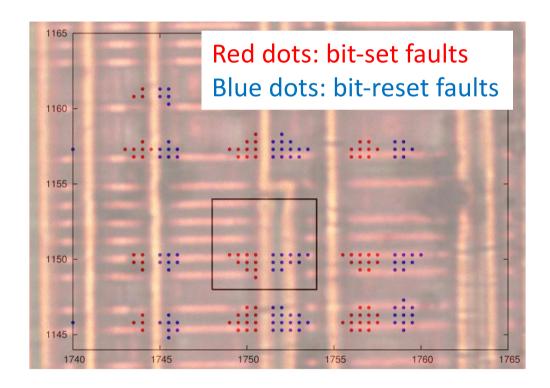

Mechanism behind bit flip by LFI

- LFI-induced photo current can short-circuit VDD and GND, which makes voltage drop at the output node, resulting in a bit flip
- Short circuit is unavoidable for bit flip

Detecting Laser Fault Injection by Substrate Bounce Monitoring*


- Using distributed on-chip monitors to detect voltage bounce in silicon substrate caused as a side effect of short circuit
- Benefit: better coverage
 - Since the voltage bounce propagates through substrate, a sensor can cover a large area

*K. Matsuda, et al., "On-Chip Substrate-Bounce Monitoring for Laser-Fault Countermeasure," AsianHOST 2016.

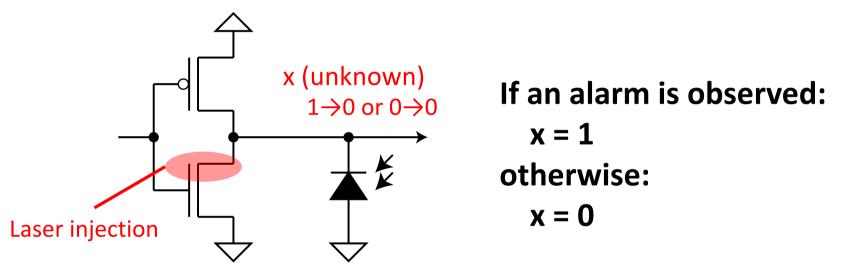

Bit-Set/Reset Faults by LFI

- Unidirectional fault
 - **Bit-set fault**: $0 \rightarrow 1$ flip only
 - **Bit-reset fault**: $1 \rightarrow 0$ flip only

Bit-Set/Reset Faults by LFI cont.

• Bit-set/reset faults of SRAM

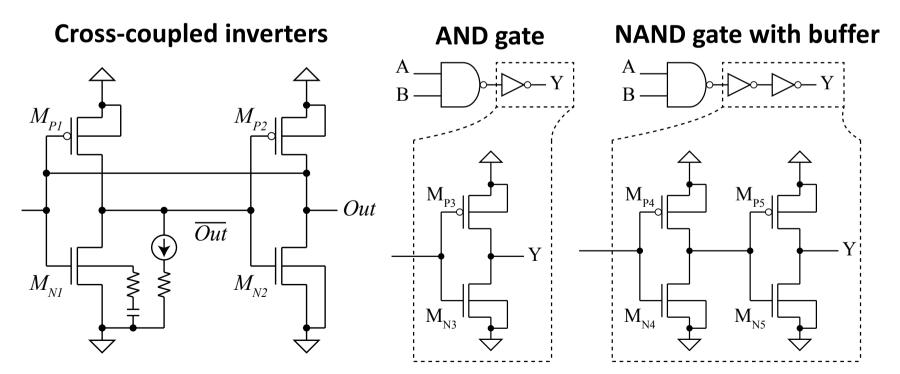
The image is taken from the paper*


*C. Roscian, A. Sarafianos, J.-M. Dutertre and A. Tria, "Fault Model Analysis of Laser-induced Faults in SRAM Memory Cells", FDTC 2013

First part:

Exploiting Bitflip Detector for Non-Invasive Probing and its Application to Ineffective Fault Analysis

Idea: Learning an Internal State by Observing Alarm from Sensor


• Prerequisite: position for LFI that causes a bit-set/reset fault

- Presence/absence of an alarm (i.e., bit flip) directly corresponds to an internal bit value
 - Attacker successfully probes 1-bit signal non-invasively

Circuit structures that can be potentially probed

- The discussion on inverter extends to other primitives
 - Cross-coupled inverters in SRAM and flipflop
 - Inverters and buffers in logic gates

Categorization

• Probing attack

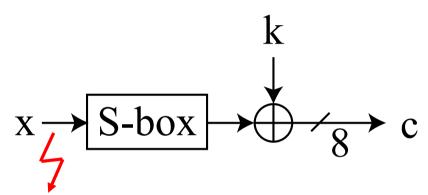
• Similarity: attacker has circuit-level resolution and recovers a bit value in a circuit

Ineffective fault analysis / safe error attack

Similarity: the attacker retrieves information by presence/absence of a fault

Second part:

Exploiting Bitflip Detector for Non-Invasive Probing and its Application to Ineffective Fault Analysis (of AES)


Attack using the 1-bit leakage

- Known- or chosen-plaintext attacks
 - Conventional probing attack on AES by Schmidt and Kim works*
- Ciphertext-only attack
 - A new setting: correct-ciphertext-only attack
 - Only correct ciphertext is released. Why?
 - A sensor detects a fault and stops releasing a faulty ciphertext

*J.-M. Schmidt and C. H. Kim, "A Probing Attack on AES," WISA 2008, LNCS 5379, pp. 256–265, 2008.

Attack on 10th (last) round of AES using Correct Ciphertext Only

• Example: bit-reset fault on the MSB of an Sbox at 10th round

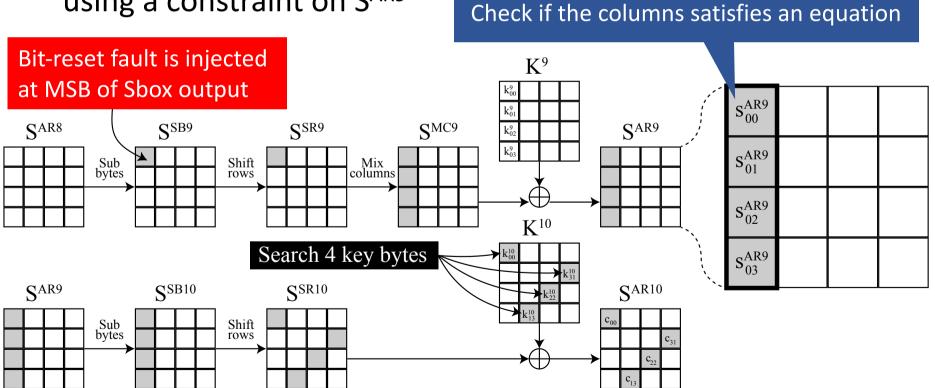
Single-bit leakage i.e., MSB is always 0 for any correct ciphertext

$$MSB(Sbox^{-1}(c \oplus \hat{k})) = \mathbf{0}$$

- 1. Guess 8-bit key \hat{k}
- 2. Calculate x using \hat{k} and c
- 3. Check if MSB of x is 0

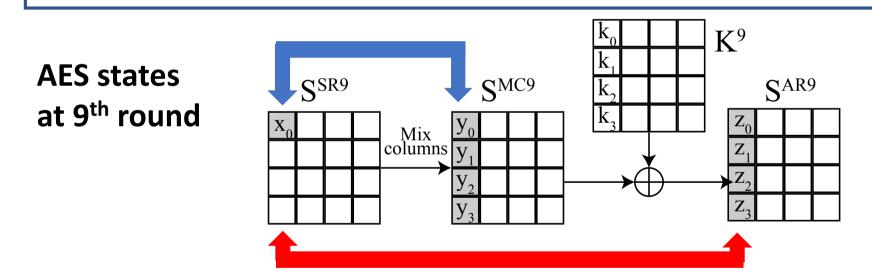
- The key space is halved for each correct ciphertext
 - Roughly 8 ciphertexts are needed to uniquely determine a key

Extending the attack to 9th round


- Why extend?
 - The previous attack recovers 1-byte key for each LFI position
 - Attacker wants to recover more bytes for each LFI position
- A common strategy is to induce a **small difference** in either internal state or ciphertext, but, ...

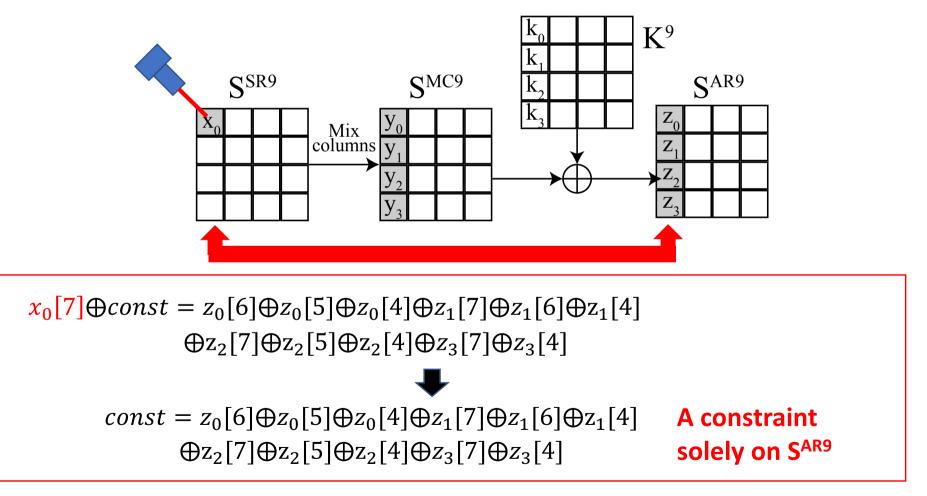
• Difficulty: no small difference

- Only correct ciphertexts are available
- Output difference is uncontrollable in known-ciphertext setting
- Idea: Using technique from **linear cryptanalysis**

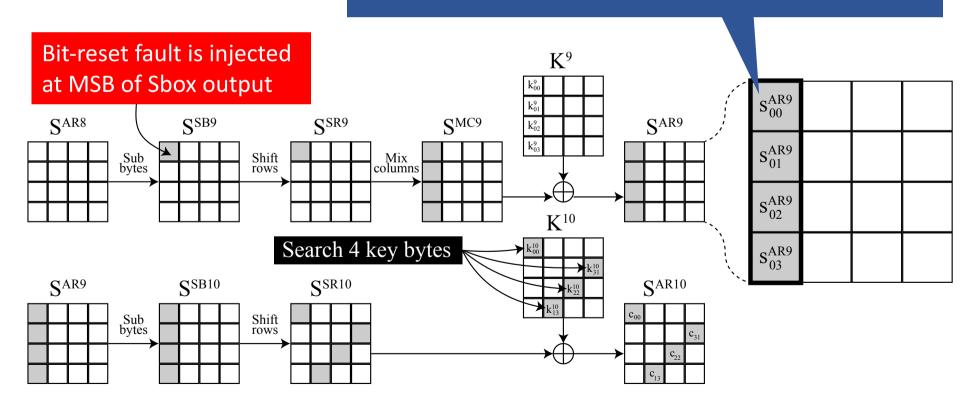

Attack on 9th round of AES using Correct Ciphertext Only (outline)

- A column in SAR9 is recovered using a 32-bit key guess
- The key guess is checked using a constraint on S^{AR9}

Linear equation


A linear equation determined by MixColumn (focusing on MSB of x_0) $x_0[7] = y_0[6] \oplus y_0[5] \oplus y_0[4] \oplus y_1[7] \oplus y_1[6] \oplus y_1[4]$ $\oplus y_2[7] \oplus y_2[5] \oplus y_2[4] \oplus y_3[7] \oplus y_3[4]$ X[i] is i-th bit of a byte X

The unknown key $k_0, ..., k_3$ degenerates to a 1-bit constant $x_0[7] \oplus const = z_0[6] \oplus z_0[5] \oplus z_0[4] \oplus z_1[7] \oplus z_1[6] \oplus z_1[4]$ $\oplus z_2[7] \oplus z_2[5] \oplus z_2[4] \oplus z_3[7] \oplus z_3[4]$


Linear equation cont.

Bit-reset fault on MSB of x_0 , then $x_0[7] = 0$ for any correct ciphertext

Attack on 9th round of AES using Correct Ciphertext Only

Check if the columns satisfies the equation $const = z_0[6] \oplus z_0[5] \oplus z_0[4] \oplus z_1[7] \oplus z_1[6] \oplus z_1[4]$ $\oplus z_2[7] \oplus z_2[5] \oplus z_2[4] \oplus z_3[7] \oplus z_3[4]$

Comparison

- Key space is halved for each correct ciphertext
 - For N ciphertexts, key space is reduced to 2-N+1
- The number of LFI positions and ciphertexts needed to recover 16-byte round key:

	The number of LFI positions	The number of correct ciphertexts
Attack on 10 th round	16	8*16=128
Attack on 9 th round	4	33*4=132

Conclusion & future work

Conclusion

- Bit-flip sensor can be used as a side-channel oracle
- Ineffective fault analysis on AES using the above leakage
- Future work
 - Experimental verification
 - Further study on probing attack
 - Extension to other sensor-based countermeasures