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Overview

• An	attack	on	a	sensor-based	
countermeasure

• Fault	detector	as	side	channel
• Obtaining	1-bit	side-channel	
information	by	observing	how	
the	fault	detector	reacts	to	a	
laser	fault	injection

• New	fault	analysis	using	the	
above	leakage	based	on	linear	
cryptanalysis

A	bit	flip	is	
detected.	

Terminating...
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Background:

Sensor-based	Countermeasure
against	Laser	Fault	Injection
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Laser	Fault	Injection (LFI)

• One	of	the	strongest	fault	injection	technique
• Instruments	are	commercially	available	for	testing

The	image	is	taken	from
https://www.riscure.com
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Sensor-based	Countermeasure	
against	Laser	Fault	Injection

• Detects	laser	fault	injection	by	using	sensors	and	
terminates	a	sensitive	operation	upon	detection

• Photo	detectors
• Disadvantage:	limited	coverage

• Laser	can	be	focused	in	order	to	avoid	photo-sensitive	area

• Substrate	bounce	monitoring*
• Monitors	temporal	short-circuit	current	for	detecting	laser	
injection

*K.	Matsuda,	et	al.,	“On-Chip	Substrate-Bounce	Monitoring	
for	Laser-Fault	Countermeasure,”	AsianHOST 2016.
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Mechanism	behind	bit	flip	by	LFI

• LFI-induced	photo	current	can	short-circuit	VDD	
and	GND,	which	makes	voltage	drop	at	the	output	
node,	resulting	in	a	bit	flip
• Short	circuit	is	unavoidable	for	bit	flip

0

ON

OFF

1→0

Short-circuit

current

Laser	injection
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Transistor-level	schematic	
of	an	inverter

LFI	is	modeled	
as	a	photo	diode



Detecting	Laser	Fault	Injection	
by	Substrate	Bounce	Monitoring*
• Using	distributed	on-chip	monitors	to	detect	voltage	bounce	in	silicon	
substrate	caused	as	a	side	effect	of	short	circuit

• Benefit:	better	coverage	
• Since	the	voltage	bounce	propagates	through	substrate,	a	sensor	
can	cover	a	large	area
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*K.	Matsuda,	et	al.,	“On-Chip	Substrate-Bounce	Monitoring	
for	Laser-Fault	Countermeasure,”	AsianHOST 2016.



Bit-Set/Reset	Faults	by	LFI

• Unidirectional	fault	
• Bit-set	fault:	0→1	flip	only
• Bit-reset	fault:	1→0	flip	only
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Bit-Set/Reset	Faults	by	LFI	cont.

• Bit-set/reset	faults	of	SRAM

Red	dots:	bit-set	faults
Blue	dots:	bit-reset	faults

*C.	Roscian,	A.	Sarafianos,	J.-M.	Dutertre and	A.	Tria,	“Fault	Model	Analysis	
of	Laser-induced	Faults	in	SRAM	Memory	Cells”,	FDTC	2013
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The	image	is	taken	
from	the	paper*	



First	part:

Exploiting	Bitflip Detector	
for	Non-Invasive	Probing	

and	its	Application	
to	Ineffective	Fault	Analysis
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Idea:	Learning	an	Internal	State	by	
Observing	Alarm	from	Sensor
• Prerequisite:	position	for	LFI	that	causes	a	bit-set/reset	fault

• Presence/absence	of	an	alarm	(i.e.,	bit	flip)	directly	
corresponds	to	an	internal	bit	value
• Attacker	successfully	probes	1-bit	signal	non-invasively

x	(unknown)

Laser	injection

If	an	alarm	is	observed:
x	=	1

otherwise:
x	=	0
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1→0	or	0→0



Circuit	structures	
that	can	be	potentially	probed
• The	discussion	on	inverter	extends	to	other	primitives

• Cross-coupled	inverters	in	SRAM and	flipflop
• Inverters	and	buffers	in	logic	gates
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Categorization

• Probing	attack
• Similarity:	attacker	has	circuit-level	resolution	and	
recovers	a	bit	value	in	a	circuit

• Ineffective	fault	analysis	/	safe	error	attack
• Similarity:	the	attacker	retrieves	information	by	
presence/absence	of	a	fault	
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Second	part:

Exploiting	Bitflip Detector	
for	Non-Invasive	Probing	

and	its	Application	
to	Ineffective	Fault	Analysis
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(of	AES)



Attack	using	the	1-bit	leakage	

• Known- or	chosen-plaintext	attacks
• Conventional	probing	attack on	AES	by	Schmidt	and	Kim	
works*

• Ciphertext-only	attack
• A	new	setting:	correct-ciphertext-only	attack
• Only	correct	ciphertext is	released.	Why?	
• A	sensor	detects	a	fault	and	stops	releasing	a	faulty	
ciphertext

*J.-M.	Schmidt	and	C.	H.	Kim,	“A	Probing	Attack	on	AES,”	WISA	2008,	LNCS	
5379,	pp.	256–265,	2008.	
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Attack	on 10th	(last)	round	of	AES
using	Correct	Ciphertext	Only

• The	key	space	is	halved	for	each	correct	ciphertext
• Roughly	8	ciphertexts are	needed	to	uniquely	determine	a	key

1. Guess	8-bit	key	𝑘"	
2. Calculate	𝑥	using	𝑘"	and	𝑐
3. Check	if	MSB	of	𝑥	is	0

𝑀𝑆𝐵(𝑆𝑏𝑜𝑥,- 𝑐⨁𝑘" ) = 0
x S-box

k

c8

Single-bit	leakage i.e.,	MSB	is	always	0	
for	any	correct	ciphertext
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• Example:	bit-reset	fault	on	the	MSB	of	an	Sbox at	10th round



Extending	the	attack	to	9th	round

• Why	extend?
• The	previous	attack	recovers	1-byte	key	for	each	LFI	position
• Attacker	wants	to	recover	more	bytes	for	each	LFI	position

• A	common	strategy	is	to	induce	a	small	difference	in	
either	internal	state	or	ciphertext,	but,	...
• Difficulty:	no	small	difference

• Only	correct	ciphertexts are	available
• Output	difference	is	uncontrollable	in	known-ciphertext
setting

• Idea:	Using	technique	from	linear	cryptanalysis
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Check	if	the	columns	satisfies	an	equation

• A	column	in	SAR9	is	recovered	using	a	32-bit	key	guess
• The	key	guess	is	checked	
using	a	constraint	on	SAR9
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Bit-reset	fault	is	injected	
at	MSB	of	Sbox output



Linear	equation
A	linear	equation	determined	by	MixColumn (focusing	on	MSB	of	𝑥2)

The	unknown	key	𝒌𝟎, … , 𝒌𝟑 degenerates	to	a	1-bit	constant
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AES	states
at	9th round

𝑥2 7 = 𝑦2[6]⨁𝑦2[5]⨁𝑦2[4]⨁𝑦-[7]⨁𝑦-[6]⨁𝑦-[4]
⨁𝑦?[7]⨁𝑦?[5]⨁𝑦?[4] ⨁𝑦@[7]⨁𝑦@[4] 𝑿 𝒊 is	i-th bit	of	a	byte	𝑿

𝑥2 7 ⨁𝑐𝑜𝑛𝑠𝑡 = 𝑧2[6]⨁𝑧2[5]⨁𝑧2[4]⨁𝑧-[7]⨁𝑧-[6]⨁z-[4]
⨁z?[7]⨁z?[5]⨁z?[4]⨁𝑧@[7]⨁𝑧@[4]
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Mix
columns
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Linear	equation	cont.

A	constraint
solely	on	SAR9

Bit-reset	fault	on	MSB	of	𝑥2,	then	𝒙𝟎 𝟕 = 𝟎 for any	correct	ciphertext
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𝑥2 7 ⨁𝑐𝑜𝑛𝑠𝑡 = 𝑧2[6]⨁𝑧2[5]⨁𝑧2[4]⨁𝑧-[7]⨁𝑧-[6]⨁z-[4]
⨁z?[7]⨁z?[5]⨁z?[4]⨁𝑧@[7]⨁𝑧@[4]

𝑐𝑜𝑛𝑠𝑡 = 𝑧2[6]⨁𝑧2[5]⨁𝑧2[4]⨁𝑧-[7]⨁𝑧-[6]⨁z-[4]
⨁z?[7]⨁z?[5]⨁z?[4]⨁𝑧@[7]⨁𝑧@[4]
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Bit-reset	fault	is	injected	
at	MSB	of	Sbox output

𝑐𝑜𝑛𝑠𝑡 = 𝑧2[6]⨁𝑧2[5]⨁𝑧2[4]⨁𝑧-[7]⨁𝑧-[6]⨁z-[4]
⨁z?[7]⨁z?[5]⨁z?[4]⨁𝑧@[7]⨁𝑧@[4]



Comparison

• Key	space	is	halved	for	each	correct	ciphertext
• For	N	ciphertexts,	key	space	is	reduced	to	2-N+1

• The	number	of	LFI	positions	and	ciphertexts
needed	to	recover	16-byte	round	key:

The	number	of	
LFI	positions

The	number of	
correct	ciphertexts

Attack on	10th round 16 8*16=128
Attack	on	9th round 4 33*4=132
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Conclusion	&	future	work

• Conclusion
• Bit-flip	sensor	can	be	used	as	a	side-channel	oracle	
• Ineffective	fault	analysis	on	AES	using	the	above	leakage

• Future	work
• Experimental	verification
• Further	study	on	probing	attack
• Extension	to	other	sensor-based	countermeasures
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